

NEK3, Active

Full-length recombinant protein expressed in Sf9 cells

Catalog # N05-10G-10

Lot # 1352-2

Product Description

Recombinant full-length human NEK3 was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is $\underline{\text{NM}}$ 002498.

Gene Aliases

HSPK36, MGC29949

Concentration

 $0.1 \, \mu \text{g/} \mu \text{l}$

Formulation

Recombinant protein stored in 50mM Tris-HCI, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol.

Storage, Shipping and Stability

Store product at -70° C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Stability is 1yr at -70° C from date of shipment. Product shipped on dry ice.

Scientific Background

NEK3 is a member of the NEK family of protein kinases that share high amino acid homology with NIMA (never in mitosis gene a). NEK3 mRNA is detected in all the proliferating cell lines with the amount not changing during the cell cycle (1). During Prolactin receptor signaling, VAV2 is phosphorylated and activated by NEK3. Overexpression of NEK3 in Chinese hamster ovary cells increases cytoskeletal re-organization in response to Prolactin while downregulation of NEK3 expression by siRNA block these effects (2). Prolactin also stimulates interaction between NEK3 and paxillin leading to increased paxillin phosphorylation, Analysis of breast tissue microarrays show a significant upregulation of NEK3 expression in malignant versus normal specimens.

References

- Kimura, M. et al: Molecular cloning and characterization of the human NIMA-related protein kinase 3 gene (NEK3). Cytogenet Cell Genet. 2001;95(3-4):177-82.
- Miller, S.L. et al: Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene. 2007 Jul 12;26(32):4668-78.

Purity

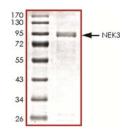
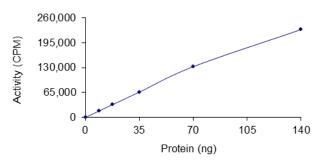



Figure 1. SDS-PAGE gel image

The purity of NEK3 was determined to be >90% by densitometry, approx. MW 86 kDa.

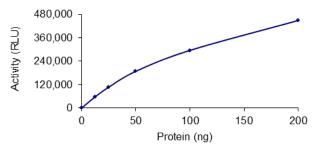

Specific Activity

Figure 2. Radiometric Assay Data

The specific activity of NEK3 was determined to be 112 nmol/min/mg as per activity assay protocol. (For Radiometric Assay Protocol on this product please see pg. 2)

Figure 3. ADP-Glo™ Assay Data

The specific activity of NEK3 was determined to be 90 nmol/min/mg as per activity assay protocol. (For ADP-GloTM Assay Protocol on this product please see pg. 3)

Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: N05-10G)

Active NEK3 ($0.1\mu g/\mu l$) diluted with Kinase Dilution Buffer III (Catalog #: K23-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active NEK3 for optimal results).

Kinase Dilution Buffer III (Catalog #: K23-09)

Kinase Assay Buffer I (Catalog #: K01-09) diluted at a 1:4 ratio (5X dilution) with 50 ng/µl BSA solution.

Kinase Assay Buffer I (Catalog #: K01-09)

Buffer components: 25mM MOPS, pH 7.2, 12.5mM β -glycerol-phosphate, 25mM MgC1₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

[33P]-ATP Assay Cocktail

Prepare 250 μ M [33 P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150 μ l of 10mM ATP Stock Solution (Catalog #: A50-09), 100 μ l [33 P]-ATP (1mCi/100 μ l), 5.75ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 1ml aliquots at -20°C.

10mM ATP Stock Solution (Catalog #: A50-09)

Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 200 μ l aliquots at -20° C.

Substrate (Catalog #: M42-51N)

Myelin basic protein (MBP) diluted in distilled H_2O to a final concentration of 1mg/ml.

Assay Protocol

- Step 1. Thaw [33P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
- Step 2. Thaw the Active NEK3, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
- Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20µl:

Component 1. 10µl of diluted Active NEK3 (Catalog #N05-10G)

Component 2. 5µl of 1mg/ml stock solution of substrate (Catalog #M42-51N)

Component 3. 5µl distilled H₂O (4°C)

- Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O.
- Step 5. Initiate the reaction by the addition of 5μl [33P]-ATP Assay Cocktail bringing the final volume up to 25μl and incubate the mixture in a water bath at 30°C for 15 minutes.
- Step 6. After the 15 minute incubation period, terminate the reaction by spotting 20μl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
- Step 7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
- Step 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- Step 9. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [33P]-ATP Specific Activity (SA) (cpm/pmol)

Specific activity (SA) = cpm for 5µl [33P]-ATP / pmoles of ATP (in 5µl of a 250µM ATP stock solution, i.e., 1,250 pmoles)

Kinase Specific Activity (SA) (pmol/min/μg or nmol/min/mg)

Corrected cpm from reaction / [(SA of 33 P-ATP in cpm/pmol)*(Reaction time in min)*(Enzyme amount in μg or mg)]*[(Reaction Volume) / (Spot Volume)]

ADP-Glo™ Activity Assay Protocol

Reaction Components

NEK3 Kinase Enzyme System (Promega, Catalog #:V4500)

NEK3, Active, 10μg (0.1μg/μl) MBP Protein, 1ml (1mg/ml) Reaction Buffer A (5X), 1.5ml DTT solution (0.1M), 25μl ADP-Glo™ Kinase Assay Kit (Promega, Catalog #: V9101)

Ultra Pure ATP, 10 mM (0.5ml) ADP, 10 mM (0.5ml) ADP-Glo™ Reagent (5ml) Kinase Detection Buffer (10ml) Kinase Detection Substrate (Lyophilized)

Reaction Buffer A (5X)

200mM Tris-HCl, pH 7.5, 100mM MgCl₂ and 0.5 µg/µl BSA.

Assay Protocol

The NEK3 assay is performed using the NEK3 Kinase Enzyme System (Promega; Catalog #: V4500) and ADP-Glo™ Kinase Assay kit (Promega; Catalog #: V9101). The NEK3 reaction utilizes ATP and generates ADP. Then the ADP-Glo™ Reagent is added to simultaneously terminate the kinase reaction and deplete the remaining ATP. Finally, the Kinase Detection Reagent is added to convert ADP to ATP and the newly synthesized ATP is converted to light using the luciferase/luciferin reaction. For more detailed protocol regarding the ADP-Glo™ Kinase Assay, see the Technical Manual #TM313, available at www.promega.com/tbs/tm313/tm313.html.

- Step 1. Thaw the ADP-Glo™ Reagents at ambient temperature. Then prepare Kinase Detection Reagent by mixing Kinase Detection Buffer with the Lyophilized Kinase Detection Substrate. Set aside.
- Step 2. Thaw the components of NEK3 Enzyme System, ADP and ATP on ice.
- Step 3. Prepare 1ml of 2X Buffer by combining 400µl Reaction Buffer A, 1µl DTT and 599µl of dH₂0.
- Step 4. Prepare 1ml of 250μM ATP Assay Solution by adding 25μl ATP solution (10mM) to 500μl of 2X Buffer and 475μl of dH₂0
- Step 5. Prepare diluted NEK3 in 1X Buffer (diluted from 2X buffer) as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active NEK3 for optimal results).
- Step 6. In a white 96-well plate (Corning Cat # 3912), add the following reaction components bringing the initial reaction volume up to 20µl:

Component 1. 10µl of diluted Active NEK3

Component 2. 5µl of 1mg/ml stock solution of substrate

Component 3. 5µl of 2X Buffer

- Step 7. Set up the blank control as outlined in step 6, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H_2O .
- Step 8. At the same time as the NEK3 kinase reaction, set up an ATP to ADP conversion curve at 50µM ATP/ADP range as described in the *ADP-Glo™ Kinase Assay* Technical Manual #TM313.
- Step 9. Initiate the NEK3 reactions by the addition of 5μl of 250μM ATP Assay Solution thereby bringing the final volume up to 25μl. Shake the plate and incubate the reaction mixture at 30°C for 15 minutes.
- Step 10. Terminate the reaction and deplete the remaining ATP by adding 25µl of ADP-Glo™ Reagent. Shake the 96well plate and then incubate the reaction mixture for another 40 minute at ambient temperature.
- Step 11. Add 50µl of the Kinase Detection Reagent, shake the plate and then incubate the reaction mixture for another 30 minute at ambient temperature.
- Step 12. Read the 96-well reaction plate using the Kinase-Glo™ Luminescence Protocol on a GloMax® Microplate Luminometer (Promega; Cat # E6501).
- Step 13. Using the conversion curve, determine the amount of ADP produced (nmol) in the presence (step 6) and absence of substrate (Step 7) and calculate the kinase specific activity as outlined below. For a detailed protocol of how to determine nmols from RLUs, see ADP-Glo™ Applications Database at http://www.promega.com/applications/cellularanalysis/cellsignaling.htm

Kinase Specific Activity (SA) (nmol/min/mg)

(ADP (step 6) - ADP (step 7)) in nmol) / (Reaction time in min)*(Enzyme amount in mg)